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Abstract—A theoretical analysis is presented of the flow field near a spherical fluid drop immersed in an
incompressible Newtonian fluid which, at large distances from the drop, is undergoing an undisturbed flow.
The undisturbed flows considered here are relevant to studies of drop miotions near a phase boundary, and to
some aspects of the coalescence of liquid drops. Exacl solutions in closed form have been found using the
harmonic function expansion in spherical coordinates. Calculation of the hydrodynamic force on the drop
leads to a generalization of Faxen's law to a fluid particle in an arbitrary undisturbed creeping-flow. The solu-
tions are then expressed in terms of the fundamental singularity solutions for Stokes flow in anticipation of
future analysis of the drop coalescence. In addition, the deformed shapes are determined for a fluid drop free-

ly suspended in an axisymmetric Poiseuillian flow.

INTRODUCTION

The present study is concerned with the dynamics
of a droplet immersed in an immiscible fluid which, at
large distances from the drop, undergoes an undisturb-
ed flow. A number of different problems are of poten-
tial interest, corresponding to various types of applica-
tion. Specifically, the translation of a fluid drop in a
quiescent fluid near a phase boundary is relevant to
coalescence of liquid drops. Drop motions in a general
flow field are relevant to studies of suspension rhe-
ology, erythrocyte motion in capillary blcod flow, and
to some aspects of gel permeation chromatography,
[1]. Another area of potential applications is to the for-
mation of emulsions where one fluid phase is to be dis-
persed throughout a second, and in particular to the
determination of the emulsification mechanisms in
colloid mills and to the design of efficient mixing de-
vices, [2,3].

When a fluid drop is suspended in a second fluid
that is caused to shear, the flow-induced stress tends to
deform the drop, and the interfacial tension between
the phases resists this deformation. If the local shear
rate is sufficiently large compared to the interfacial re-
storing force, the drop bursts into two or more frag-
ments. Even when the drop does not burst, the distor-
tion produced by a given flow is of interest in under-
standing the rheological behavior of flowing emul-
sions. Emulsions are known to exhibit such non-New-
tonian characteristics as shear-dependent viscosity,

viscoelasticity, and normal stress differences in rec-
tilinear flow, even when the concentration of the
dispersed phases is small. From a knowledge of the
deformation of the drops forming the dispersed phase
and of the disturbance flow in their vicinity, a constitu-
tive equation can be developed, at least in principle,
for the emulsion.

The problern has received considerable attention
in the fluid mechanics literature over the past fifty
years since Taylor's celebrate work on the viscosity of
a fluid containing small drops of another fluid [4.5].
From a theoretical point of view, the drop motion
problem is extremely difficult. The equation of motion
must be solved for the flow both inside and outside the
drop, with boundary conditions applied on its surface.
However, the shape of the drop is not known, a priori,
but must be determined as part of the solution. To
date, three distinct methods have been commonly em-
ployed in studying drop deformation; namely, (1) a do-
main perturbation technique (i.e., asymptotic analysis)
for slightly deformed drops [6-10], (2) a slender-body
theory for highly elongated drops [11-14], and (3) a
numerical analysis (i.e., boundary-integral method) for
selected intermediate cases [15,16]. A plethora of
studies, however, has been concerned with the linear
undisturbed flow. Our particular contribution lies in a
systematic investigation of the effect of flow param-
eters in the quadratic imposed-flow. The undisturbed
flow considered here are the quadratic paraboloidal
and stagnation flows which are essential for the
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analysis of drop motion near a phase boundary, [17].
The paraboloidal flow with a typical representation
corresponds to Hagen-Poiseuille flow, and the solution
can be used to determine the motion of a fiuid drop
through a tube of elliptic cross-section.

The present paper represents an initial study whose
purpose is the generalization of previous theoretical work
to the case of quadratic undisturbed flow. The analysis
is formally carried out by the eigenfunction expansion
for Stokes equations in spherical coordinates under the
conditions where the drop deformation remains small.
The theory determines the drop deformaticn and the
general motion of a freely suspended drop in the pre-
scribed mean flow. Then, the solutions are expressed in
terms of the fundamental singularity solutions for Sto-
kes flow for the purpose of future analysis of the drop
coalescence near a phase boundary. The novel feature
in the analysis is that the types of fundamental singu-
larities needed to represent the solution have the samie
form (i.e., orientation) as for a sofid, no-slip sphere ex-
cept for magnitudes of the necessary singularities that
depend on the viscosity ratio. Among the most inter-
esting results is a generalization of Faxen’s law to a
fluid particle. According to the generalized Faxen's
law, the translational velocity of a sphere freely sus-
pended in an arbitrary undisturbed flow changes from
the surface average (Faxen’s) velocity to the local veloc-
ity of the primary flow at the drop center in the tran-
sition from a solid, no-slip sphere to an inviscid gas
bubble.

PROBLEM STATEMENT

We consider a neutrally buoyant spherical drop
suspended in an incompressible Newtonian fluid
which is undergoing an undisturbed flow U™ (x) at in-
finity, as indicated in Figure 1. The interface between
the two immiscible fluids 1 and 2 is assumed to be
clean, mobile, and characterized completely by con-
stant interfacial tension 7. The analysis which we con-
sider is predicated on the neglect of inertia effects in
the fluid both outside and inside the drop. Let a be the
characteristic drop radius, and u, the scaling of the un-
disturbed flow. Furthermore, define the Reynolds
number, Re=au,/v,, where v, is the kinematic viscosi-
ty of fluid 2 outside the drop. Viewing the problem as a
fixed laboratory observer, and requring

Re< O (1), (1)

the governing equations are approximated by the fa-
miliar Stokes equation plus the continuity equation in
each fiuid, i.e., in dimensionless form,
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byU~x)=I"x Vi i—
S

Fig. 1. Schematic sketch for (a) a uniaxial exten-
sional flow and (b) a linear shear flow. The in-
stantaneous coordinate of the drop center is
x=0.

V-o=-Vpitxvii=0,V-i=0 for flud 1 (2)

Veo=-Vp+Vu=0,V-u=0 for fluid 2 (3}

in whiche (or 3) is the dimensionless stress tensor with
the characteristic stress taken as

U
pe= talte

and « is the viscosity ratio, i.e., x =z /u,. The bound-
ary condition far from the drop is

u-U" (), p-»p~x) as [x]|-»o0 (4)

in a laboratory frame of reference. On the interface
separating fluids 1 and 2, xS, we require

(lul]s=0 (5)

[ln'alls:%b(v-n)n (61
a1 of

n-u=n-u—= vS| at (7)

where the symbol (| -| 15 denotes the jump in the brack-
eted quantity across S. In these equations, the drop
surface S is conveniently specified using a spherical
coordinate system, defined as S:r-1-f, ¢,0) = 0. The
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vector n is the unit normal into fluid 2 at the interface,
e, n=VS/1VS|land-V-n is the surface curvature.

Equation (6) is the surface stress condition, and
contains both continuity of tangential stress, and the
normal stress balance between viscous and pressure
stresses and capillary force. The parameter Ca(=pu /7)
is the capillary number, i.e., the ratio of the deforming
viscous force to the restoring surface tension force.
Equation (7) is the kinematic condition which relates
the normal velocity components at the drop surface to
the rate of change of the drop shape. The equations
and boundary conditions (2)(7) are sufficient to com-
pletely determine the velocity and pressure fields in
fluids 1 and 2, as well as the drop shape.

SOLUTION METHODOLOGY

Now, we have seen that the problem represented
by (2H7) is both nonlinear, and unsteady due to the
boundary conditions (6) and (7). Thus, the solutions
for motion of a drop will depend on the prior history of
the imposed flow it has experienced. Although the
nonlinear drop deformation problem cannot be solv-
ed exactly (except by numerical methods), it can be
solved approximately by an asymptotic method when
the drop deformation remains small. The obvious
physical requirement for this condition tc be satisfied
is that

Ca 0 11). (8)
It is important to recognize that the capillary numbel
Ca can be viewed as the ratio of the surface tension
relaxation time scale, ua/7, relative to the advection

time scale, a/u,, of the imposed flow. When the condi-
tion (8) is satisfied, the drop deformation will not only

be in a quast-steady (i.e., %{: 0), but the magnitude of
the deformation will also be asymptotically small.

Since for a nearly spherical drop shape the bound-
ary conditions can be extrapolated onto a sphere, the
flow fields inside and outside the drop can be deter-
mined as a regular perturbation expansion, and hence
the evolution of the distortion can be predicted unitl
such time as il ceases to be small. The leading order
approximation [i.e., for f(6,¢)] thus represents the
motion of a spherical drop immersed in the prescribed
flow. When the velocity and stress fields have been de-
termined from the leading order approximation equa-
tions, the normal stress condition (6) can be used to
determine a first correction to the drop shape.

The most frequently used technique for the leading
order problem is the use of eigensolutions of Laplace’s
equation in spherical coordinates. Lamb [18] derived a
general solution of the creeping motion equations in a

series of solid spherical harmonics. Specializing the
general solution to separate domains involving the re-
gions inside and outside the drop, we must have

py=p 0+ 3 . r=x] (9)
i w X
wixi=U )+ 5 (YL p
n=1 v 14
. n=2 bn . ntl P
2n2n—1) rv Y n2n-1) ! r"'“]
10)
for r>1, and

px)=2 1y
. = - ~ (n+3)r ~
:}: RX n *4.*—/_*4‘ n
=2 WXtV et o T ants) VP

nr po,

x(n+1) 2n+3) ) 12
for r<1. Here, pun, Xn $n pn. X and @, are the solid
spherical harmonics of order n. It should be noted that
the general solutions (9(12) automatically satisfy the
governing differential equations (2) and (3), as well as
the condition (4) of vanishing disturbances in the far
field. The various spherical harmonics are to be deter-
mined from the boundary conditions (5) and (6) at the
drop surface, i.e., continuity of tangential velocity and
stress and zero normal velocity. All that is required for
doing this is a specification of the undisturbed flow
velocity U”(x) and pressure p=(x) in terms of spher-
ical harmonics plus a solution of the algebraic rela-
tionships that result from applying the boundary con-
ditions (5) and (6) at the spherical drop surface.

In the analysis which follows, we shall use the gen-
eral solution (9)-(12) to examine the case of a drop
which moves through various undisturbed Stokes
flows in an unbounded domain. The solution for the
flow outside the drop will then be expressed in terms
of the fundamental solutions of the creeping motion
equations, and these results used in the forthcoming
part of the present series to study drop motions near a
phase boundary, as a simple model of ‘coalescence’. In
addition, it will be shown that a generalization of Fax-
en’s law can be obtained to calculate the resistance of a
drop suspended in an arbitrary undisturbed Stokes
flow. Finally, the deformed shapes will be determined
for a fluid drop freely suspended in an axisymmetric
paraboloidal (Poiseuillian) flow.

UNIFORM STREAMING AND LINEAR FLOWS

Let us then begin by considering the case of a fluid
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drop immersed in a uniform streaming, linear shear or
uniaxial extentional flow of an unbounded fluid, as de-
picted in Figure 1. Although a number of the linear-
flow cases for a spherical drop in an unbounded do-
main have previously been solved elsewhere, by other
methods, the solutions as their expression in terms of
a superposition of fundamental singularities are a nec-
essary preliminary to the use of reflections procedure
for studying drop motions near a boundary [17,19].

For the case of a uniform streaming flow U " (x) =
€, in an infinite fluid domain with no external bound-
aries, an exact solution for a fluid drop is the Hada-
mard-Rybezynski solution [20]. The velocity field out-
side the fluid drop in this solution can be represented
by superposition of the fundamental soluzions for a
point force (i.e., Stokeslet) and a potential dipole, both
applied at the drop center:

.3 2/3+«x

Stokeslet © = u,(x;e,) (13a)
4 1+«

. : . L_ X . N

Potential Dipole : 4 l—+xu,,(x, e,.) {13b}

where x is the viscosity ratio of the fluid drop relative
to the suspending fluid. The fundamental solutions ug
and u,, for a Stokeslet @ and a potential dipole 8 are
given by

(a*x)x

U, (X @)= 2+ (14a)
and
uy gy = - £ LY (14b)

The most interesting feature of solution (13a,b) is that
it is a superposition of precisely the same singularities
as are needed for a rigid, solid sphere in the same flow.
Indeed, as x—o0, equations (13a,b) reduce to the veloc-
ity field for the case of a rigid, no-slip sphere, and is
identical with the flow generated by the singularities,

a= %e, and Bz*%exat the origin. Thus, in spite of
the fact that the boundary conditions at the drop sur-
face are quite different from the solid sphere-i.e., con-
tinuity of tangential velocity and stress and zero nor-
mal velocity are required instead of the no-slip
condition-it is only magnitude of the necessary sin-
gularities that changes rather than the type of singular-
ities in the transition from a solid to fluid sphere.

It is also straightforward to solve for the motion of a
fluid drop in an unbounded domain that is undergoing
various linear undisturbed flow. We begin by consider-
ing the simplest case of an extensional flow

U=x;=E - x
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where the strain rate tensor E ={£,} is defined by £, =
38,6,~8; Note that E has been nondimensionalized
with respect to the mean strain rate £ (i.e., u.= Ea).
Expanding U” (x) and p = (x) in terms of spherical har-
monics, it can be easily shown that the exact solution
for the velocity field exterior to a drop is equivalent to
that generated by a stresslet and a potential quadru-
pole at the drop center, of the form:

2/5+
Stresslet . — 2 iSﬁ}—uss (x:e. e} (15a)
2 1+«
. . 1 .
Potential Quadrupole | — 0 lixupg (x;e. e,)

(15b}
where the fundamental solutions, ug and upg, for a

stresslet (7,8) and a potential quadrupole (v,f) are
given by

U, (X; . 5

( o) =- [%s*ﬂzji—mjx (16a)

and
Upe (X, E1=CFu, (x; v). (16b)

Again the remarkable fact is that the singularities re-
quired to satisfy boundary conditions at the surface of
a drop are the same as required for a no-slip sphere. It
is only the magnitude of the coefficients that depends
on the viscosity ratio, i.e., x. Of course, the ratio of
stresslet to potential quadrupole strength is not the
same as for a solid sphere, except in the limit x - oo
when the present solution for the velocity field exterior
to the sphere reduces to
oyt 5 , 1 ,

u(x)=U~Kx)— o Uss (Xs ey, e,) — o U x:e, e,)
which is identical with Chwang and Wu's result for the
case of a solid sphere [21].

Another linear flow problem that we need for study
of drop motion near a phase boundary is the steady
simple shear flow past a neutrally buoyant drop [19].
In this problem, the fluid velocity at infinity, nondi-
mensionalized with respect to u.=I"a(I": shear rate),
is

U~ (x)=ye,.

Since a simple shear flow can be represented as a
superposition of a plane extensional flow and a rigid
body rotation, we can easily determine a complete
solution by superposition of the preceding results of
(15a,b) and the rigid body rotation. The singularities re-
quired for construction of the solution exterior (o the
drop, apart from the rigid body rotation and primary
flow, are a stresslet and a potential quadrupole of the



Motions of a Fluid Drop in Linear and Quadratic Flows 325

form:
e , )
Stresslet @ — % 'Z/lsr— Vs (X ey, e,) (17a)
Potential Quadrupole © — 1 ~x—upq (x; e, e,).

6 1 x
(17b)

The present solution, (17a,b), is identical to that obtain-
ed by Taylor (4] who investigated the viscosity of a
fluid containing small drops of another fluid. Again, it
is noteworthy that the same fundamental singularities
apply for the fluid drop, as for the solid sphere, though
their ratio of magnitudes reduces to the no-slip limit
only for x - co.

QUADRATIC PARABOLOIDAL AND
STAGNATION FLOWS

Wenow consider various quadratic flows that will
be necessary for solution of the problem of drop mo-
tion near a phase boundary The first case is a flow
with a paraboloidal velocity profile.

U~ x)= (gy"+ 20 e, p~(x)=2{¢+1jx. (18a b)

The spherical drop is again assumed to be centered at
the origin, see Figure 2 (in this case u_ = Ka*, p, = uKa,
with proportionality constant K). The form of the
paraboloidal flow depends upon the value of the param-
eter § . When € =0, the paraboloidal flow degenerates
into a 2-dimensional Poiseuille flow. For £>0, it
can be interpreted as the pressure-driven flow through
a tube of elliptic cross-section. The case £+ 0 is prima-
rily of interest as a local component of a more com-
plicated flow.

Let us first consider the simple case of an axisym-
metric paraboloidal flow with & = 1. In this case, the
solution must be independent of the azimuthal angle
# . Thus, the only nonzero spherical harmonics in the
general solution are those with rank zero, and, in addi-
tiori, X, = 0. The remaining spherical harmonics can
be determined from the boundary conditions (5) and
(6) at the drop surface in combination with the presc-

ribed flow field at infinity that is incorporated into the
general solutions, (94(12).

The velocity field exterior to the drop, correspond-
ing to the exact solution for £=1, can again be ex-
pressed by a superposition of the fundamental solu-
tions for Stokes flow. The required form, apart from
the primary flow, is:

4

-
Stokeslet @ - e

us(x;e,) (18a)

a) U

L
Fig. 2. Schematic sketch for (a) a quadratic para-
boloidal flow, and (b) a quadratic stagnation

flow,
Potential Dipole | — 1—12 glaéfu,;{x; e, (19b)
9 2

Stokes Quadrupole : le “ij*: aax’ u; (x;e;)

(19c)
1 N l; ,,l_,* ; inee

Potential Octupole : STREE. ax,ub\x,e,)

(19d)

As suggested by the variable velocity gradient of the
primary flow we also require an axial Stokes quadru-
pole éa%)u . (x;e,)and a potential octupole 53;7 up (xse )
that is associated with the Stokes quadrupole to bal-
ance the power-law variations of the solution in r. It is
again noteworthy that the singularities required in (19)
for a drop are identical to those determined by
Chwang and Wu [21] for rigid, solid sphere, with the
coefficients reducing to the solid sphere values for
x—oo. The drag on the drop comes solely from the
contribution of the Stokeslet:

F=tr—e, 20
(the dimensional drag is F multiplied by #Ka®). As ex-
pected, the drag is an increasing function of the vis-
cosity ratio x. Indeed, the drag becomes zero for an
inviscid gas bubble (i.e., ¥ = 0).

Korean J. Ch. E. (Vol. 6, No. 4)
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To construct an exact solution for the more general
paraboloidal flow, (18) with £ # 1, we need to deter-
mine a solution either for

U~ (x;=y’e, (21a;
or for
U~ x)=7"e,. 21b)

Any general paraboloidal flow, (18), with § # 1, can
then be constructed by superposition owing to the
linearity of the problem. Moreover, the solution for
{(21a) [or (21b)] can be easily obtained by decomposing
the exact solution (19) just obtained for U~ (x) = (* +
Z)e, into two symmetric parts corresponding to the
2-dimensional paraboloidal flows of (21a,b), see Yang&
Leal [22]. The total hydrodynamic force acring on the
spherical drop in the primary flow, (18), for arbitrary £
can be obtained by superposition:

F=2z(1+¢) ﬁex. (22)

Te torque T is obviously zero for arbitrary €.
Finally, we consider a quadratic stagnation flow
with a velocity profile

U“('x):%flJrS)x’ex— Exye,— xze, (23a;
which obviously satisfies the creeping mction equa-
tions if the pressure associated with it is

pex)=(1+¢€)x, (23b)

The stagnation plane is x = 0, as depicted in Figure 2.
Although this type of quadratic flow may be of some
intrinsic interest as a local component of a more com-
plicated flow in an unbounded domain, it is primarily
of interest in determining the motion of a particle near
a phase boundary.

Let us consider, first, the simple case of the axisym-
metric stagnation flow, (23) with £ = 1. In this case, the
exact solution for the flow fields exterior and interior to
the drop involves the nonzero spherical harmonics, p,,
and ¢, with n=1, 3 and rank zero, in the general
solution (9)(12). Not surprisingly, in view cf previous
examples, the flow field exterior to the spherical drop
can be expressed in terms of fundamental solutions of
Stokes' equations. In particular, the exterior velocity
associated with the spherical harmonics p,and ¢,can
be represented by a Stokeslet (required to produce a
drag), a potential dipole (associated with the Stokeslet
to account for the body-thickness effect), an axial Sto-
kes quadrupole [as suggested by the variable velocity
gradient of U~ (x)] and a potential octupole (associated
with the Stokes quadrupole}:
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Stokeslet © — 1 X ug(x ey (24a)
4 14«
. . . 1 2+« \ .
Potential Dipole : 2 17+hku,,(}i£,e,) (24b)
L l247x 2
Stokes Quadrupole © — 5 T axzus(x,ex)
(24c)
O 1 x 9
Potential Octupale : TR ax,u,,(x,ej,).
(24d)

The total hydrodynamic force on the drop is evaluated
from the Stokeslet contribution:

F=2nij’+‘j;ex {29

which reduces in the limiting case of a solid sphere
(i.e,x—00) to lim F =2re,.

Now, we consider the more general quadratic flow,
(23) with § # 1. The solution exterior to the spherical
drop is analogous to that for U~ (x) = (¢&y* + Z%e, in
the previous example. In view of the linearity of the
problem, it is sufficient to solve for the primary flow

U= (x)= %xQe,‘—xyey (26a)
or
U (x)= 3 e, - xze. (26b)

in order to construct the exact solution for U~ (x)
given by (23) with arbitrary . However, if we note that
the primary flow, (23) with § =1, consists of two sym-
metric components of the type (26a,b), then decom-
posing the solution (24) into the two parts we can easi-
ly determine the velocity field for each component
flow.

The resulting hydrodynamic force acting on the
drop immersed in the primary flow, with U™ (x}) given
by (23}, is thus

F:n(l+5)fc+lxe,_ @0

When x - oo, Equation (27) reduces to the drag for the
case of a solid, no-slip sphere, and is identical with the
result of Chwang [23] for €= 0. It is noteworthy that a
freely suspended drop at the stagnation point of the

- - . . — 1 -+ Ef x
primary flow will translate with velocityy 2 59 3x
X

e, without applying a negative force — x(1+¢ iT%
e.. The induced translational velocity becomes zero
as x—0, so that an inviscid gas bubble will stay at the
stagnation point at all times.
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GENERALIZED FAXEN's LAW

Let us then turn to the general problem of a spheri-
cal drop immersed in an arbitrary undisturbed flow
field {U” (x), o= (x}} which itself satisfies the creep-
ing motion equations. Following the preceding anal-
ysis, this problem may be solved directly by a specifi-
cation of the various unknown spherical harmonics
from the boundary conditions at the sphere surface,
i.e., the continuity of tangential velocity and stress and
zero-normal velocity. However, if we wish only to cal-
culate the hydrodynamic force on a sphere (solid or
fluid), and not the velocity field itself, it is possible to
do so by evaluating only a small number of spherical
harmonics as a consequence of the integral theorem
for the spherical harmonics [20].

A general expression for the hydrodynamic force
exerted on a particle of arbitrary shape can be derived
by integrating the surface force n- o over a circumscrib-
ed sphere in the fluid:

F:"’47(Vpx~ (28)

Thus, the hydrodynamic force on any spherical parti-
cle can be evaluated by determining the spherical har-
monic p, from the boundary conditions at the sphere
surface. Adopting the general method outlined by Bren-
ner [24], we can determine directly this harmonic p,
by utilizing the orthogonal properties and mean-value
theorem of the spherical harmonics and the vector
identities of V*U== ¥~ =0 etc, in the creeping
flow. The result for a spherical drop is simply given by
VERS

o1 x i
U= (0 + 5 T2 U=(0)]-
1-+xU (0) T 1 U= 0))-x.

29

2]

|

N‘E_»J

H=- (-

The linearity of the problem enables us tc determine
the resistance of a drop which moves with transla-
tional velocity U in an undisturbed flow. Combining
(13a) with (29) we have

2/3+x . x " .
PGt U (0) - U+ 2 —— VU~ (0).30
F=6:155 U (0) - U 4 x5 72U (01,50

This result is a generalization of Faxen’s law to a spher-
ical drop immersed in an arbitrary undisturbed
flow. It is a simple matter to reproduce Faxen's law by
taking limit x > oo in the solution (30), i.e., F=6r
{UZ(0) - Ut+ 7V~ (0) as x— co.

From the generalized Faxen’s law, (30), we can eval-
uate the translational velocity U of a freely suspended
neutrally buoyant drop in an arbitrary mean flow
U~ (x):

1

U=<U">, - ~%~mV’U“('0) (31a)

where the surface average of the primary flow
< U=> sis given by

<U*>,=U"{0)+ gl;V’L'““(O). 31b)

it is of interest to note that the translational velocity
(31a) is different frorn the surface average Faxen’s velocity
of the primary flow, which would be the result for
a solid, no-slip sphere according to Faxen's law. In-
deed, as x— 0, the translational velocity becomes the
same as the local velocity of the primary flow at the
drop center, U=U" (0). As an example of applica-
tion, we determine the trajectory for a spherical drop
freely suspended in an off-centered paraboloidal flow,
U~ (x) = &(rvy)” + (220’ &, that is equivalent to a
centered one (i.e., with y, = z, = 0) superimposed on a
uniform streaming flow plus linear shear flows. The re-
sult is

—(gyrl LTE
U [E}/o t 2o 3 2/34x]€1. (32

The trajectory equation (32) are relevant to the prob-
lem of a spherical drop freely suspended at an ar-
bitrary point in Poiseuillian flow through a cylindrical
tube of elliptic cross-section.

DROP DEFORMATION

When a drop moves through a viscous fluid, the
fluid in the neighborhood of the drop is disturbed. The
disturbance generates a stress system which can be
resolved into tangential and normal stresses acting at
the drop surface. The tangential stress is assumed to be
transmitted undiminished across the interface and
thus establishes a system of velocity gradient in the
vicinity of the interface. The normal stress, on the
other hand, is discontinuous at the interface, and
generates normal stress differences across the interface
which can be balanced by capillary forces through in-
terface deformation. The leading-order solutions ob-
tained in the preceding sections for a spherical drop
satisfy the conditions of continuity of the tangential veloci-
ty and stress at the undeformed interface, as well as
zero-normal velocity. However, they do produce an im-
balance in the normal stress components across the
drop surface. Thus, to calculate a first correction to the
drop shape, it is necessary to solve the differential
equations (6) with the normal stress difference
(| o-n| ) evaluated from the leading-order solution.

As a simple illustration, consider the problem of a
fluid drop freely suspended in a circular cylindrical
tube through which a viscous fluid is moving axially.
We suppose that the cylinder radius, R, is much larger

than that of the drop (i.e., 7%- < 1) so that the hydro-
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"

U™(x)= :pi_ok"e(_PJ V24 2%

Fig. 3. Schematic sketch of a drop freely suspended
in a Poiseuille flow.

dynamic wall-effect may be negligible. The cylinder
axis is taken to be the x-axis, at which the drop center
is situated, see Figure 3. At large distances from the
drop the undisturbed flow is a quadratic paraboloidal

(i.e., Poiseuillian) flow. Thus we set
U= (x] = (R*—p’le, p*=y" +2° {33)

According to the generalized Faxen's law, the drop will
move with a constant velocity

= (R'-

2+3 Jex

parallel to the axis, whereas the superficial flow of fluid
occurs in the same direction with a mean velocity of
R*/2 e, Note that the velocity is nondimensionalized
with respect to u = Ka’, and K is a Poiseuille-flow
parameter.

The normal stress difference [|o-nn || across the
drop surface S can be evaluated by a superposition of
the leading-order solutions for a uniform streaming
and quadratic paraboloidal flows and expressed in
termns of the Legendre polynomial of third order, Py:
Pt ; &%%P (7}, p=cos 8

(34)
where 8 is the spherical polar angle measured from
the x-axis, that is the axis of symmetry. [n (34), p”

({en-n{)s=

Case |: Ca=0.7 Cﬂ;

October, 1989

Case Il: Ca = Cay

denotes the pressure at the interface inside the drop
phase and p = is the reference pressure far from the
drop. This pressure difference, p”-p = , is precisely bal-
anced by interfacial tension for the drop in its undis-
turbed spherical shape (S: 1 =10), i.e., p"p= = éa It
is thus obvious that the first correction to the drop
shape, f(8, ¢), is independent of the azimuthal angle
¢ owing to the axisymmetry of the problem. The dif-
ferential equation for the shape function f(8) follows
directly by substitution of (34) into (6), noting that
n= VS/IVSI, so that

RUEEREAREICES

dn

Cal0+11x

Y s
PR =P ln)

where Ca —&Ka . The equation (35) can be solved in
terms of the Legendre polynomials subject to the con-
ditions | f(n)dn= 0 since the characteristic length a
has beén'set equal to, the radius of the ‘equivalent’
spherical drop, and | nf(n)d7n = 0 since the origin of
the coordinate system'has been chosen to coincide
with the center of mass of the drop. The resulting solu-
tion for the drop shape S(r,8) is

Sir,8) i r—-1-f161=0 (36a)
where
f1g)= Calt 1 1IP, {cosd). (36b)
2 1+x

The computation shows that there exist three dis-
tinct cases depending on the capillary number, i.e.

. _ 1+x
Case 1 : Ca<(Ca=0.2857 S
1+ x
Case T : Ca;< Ca= Ca,=0. 3412 i

Case Il : Cay<Ca

that exhibit different deformation behaviors. The re-
sults are shown in Figure 4. In the case 1, the surface
curvature V-n is positive everywhere at the drop sur-
face. When the capillary number has a critical value
Ca, the curvature is zero at the front stagnation point

Case lll: Ca -
Fig. 4. Deformed drop shapes corresponding to the three distinct cases I, Il and IIL.

1.5 Cay
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(8= 180°), which is identified by letter A. On the other
hand, for case II, the interface in the neighborhood of
the stagnation point A becomes dented (i.e., ¥ -n<0)
into the drop (and V-n >0 elsewhere). As we can see
in Figure 4, the waist appears at point B (8= 62.5°) if
the capillary number is larger than the second critical
value Ca;. Although the present analysis cannot pro-
vide any quantitative informations for very large defor-
mation, it can be expected from the result that the
drop will deform without limit eventually leading to
breakup as the capillary number increases further after
the waist appears.

This completes our detailed study of solutions for a
fluid drop in an unbounded fluid, immersed in a pre-
cribed mean flow at infinity. Calculation of the hydro-
dynamic force exerted on the drop leads to a Faxen-
type law for a spherical fluid particle in an arbitrary
undisturbed Stokes flow. These solutions play an im-
portant role in determining the general motion of a
drop in the vicinity of a phase boundary. The most in-
teresting, and important, feature of the unbounded do-
main solutions is that the disturbance flow in the fluid
can always be expressed as a superposition of the
same fundamental singularities at the drop center, as
are required for motion of a solid, no-slip sphere in the
same flow. Only the relative strengths of these singu-
larities depend upon the viscosity ratio.
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