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Abstract--A theoretical analysis is presented of the flow field near a spherical fluid drop immersed in an 
incompressible Newtonian fluid which, at large distances from the drop, is ~Jndergoing an undisturbed flow. 
The undisturbed flows considered here are relevant to studies of drop motions near a phase boundary, and to 
some aspects of the coalescence of liquid drops. Exacl solutions in closed form have been found using the 
harmonic function expansion in spherical coordinates. Calculation of the hydrodynamic force on the drop 
leads to a generalization of Faxen's law to a fluM particle in an arbitrary undisturbed creeping-flow. The solu- 
tions are then expressed in terms of the fundamental :singularity solutions for Stokes flow in anticipation of 
future analysis of the drop coalescence. In addition, the deformed shapes are determined for a fluid drop free- 
ly suspended in an axisymmetric Poiseuillian flow. 

INTRODUCTION 

The present study is concerned with the dynamics 
of a droplet immersed in an immiscible fhJid which, at 
large distances from the drop, undergoes an undisturb- 
ed flow. A number of different problems are of poten- 
tial interest, corresponding to various types of applica- 
tion. Specifically, the translation of a fluid drop in a 
quiescent fluid near a phase boundary is relevant to 
coalescence of liquid drops. Drop motions in a general 
flow field are relevant to studies of suspension rhe- 
ology, erythrocyte motion in capillary blood flow, a:nd 
to some aspects of gel permeation chromatography, 
[1]. Another area of potential applications is to the for- 
mation of emulsions where one fluid phase is to be dis- 
persed throughout a second, and in particular to the 
determination of the emulsification mechanisms in 
colloid mills and to the design of efficient mixing de- 
vices, [2,3]. 

When a fluid drop is suspended in a second fluid 
that is caused to shear, the flow-induced s.tress tends to 
deform the drop, and the interracial ten:~ion between 
the phases resists this deformation. If the local shear 
rate is sufficiently large compared to the interfacial re- 
storing force, the drop bursts into two or more frag- 
ments. Even when the drop does not burst, the distor- 
tion produced by a given flow is of interest in under- 
standing the rheological behavior of flowing emul- 
sions. Emulsions are known to exhibit such non-New- 
tonian characteristics as shear-dependent viscosity, 

viscoelasticity, and normal stress differences in rec- 
tilinear flow, even when the concentration of the 
dispersed phases is small. From a knowledge of the 
deformation of the drops forming the dispersed phase 
and of the disturbance flow in their vicinity, a constitu- 
tive equation can be developed, at least in principle, 
for the emulsion. 

The problem has received considerable attention 
in the fluid mechanics literature over the past fifty 
years since Taylor's celebrate work on the viscosity of 
a fluid containing small drops of another fluid [4,5]. 
From a theoretical point of view, the drop motion 
problem is extremely difficult. The equation of motion 
must be solved for the flow both inside and outside the 
drop, with boundary conditions applied on its surface. 
However, the shape of the drop is not known, a priori, 
but must be determined as part of the solution. To 
date, three distinct methods have been commonly em- 
ployed in studying drop deformation; namely, (1) a do- 
main perturbation technique (i.e., asymptotic analysis) 
for slightly deformed drops [6-10], (2) a slender-body 
theory for highly elongated drops [11-14], and (3) a 
numerical analysis (i.e., boundary-integral method) for 
selected intermediate cases [15,16]. A plethora of 
studies, however, has been concerned with the linear 
undisturbed flow. Our particular contribution lies in a 
systematic investigation of the effect of flow param- 
eters in the quadratic imposed-flow. The undisturbed 
flow considered here are the quadratic paraboloidal 
and stagnation flows which are essential for the 
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analysis of drop motion near a phase boundary, [17]. 
The paraboloidal flow with a typical representation 
corresponds to Hagen-Poiseuille flow, and the solution 
can be used to determine the motion of a fluid drop 
through a tube of elliptic cross-section. 

The present paper represents an initial study whose 
purpose is the generalization of previous theoretical work 
to the case of quadratic undisturbed flow. The analysis 
is formally carried out by the eigenfunction expansion 
for Stokes equations in spherical coordinates under the 
conditions where the drop deformation remains small. 
The theory determines the drop deformatien and the 
general motion of a freely suspended drop in the pre- 
scribed mean flow. Then, the solutions are expressed in 
terms of the fundamental singularity solutio~s for Sto- 
kes flow for the purpose of future analysis of the drop 
coalescence near a phase boundary. The novel feature 
in the analysis is that the types of fundamental singu- 
larities needed to represent the solution have the same 
form (i.e., orientation) as for a solid, no-slip sphere ex- 
cept for magnitudes Of the necessary singularities that 
depend on the viscosity ratio. Among the most inter- 
esting: results is a generalization of Faxen's law to a 
fluid particle. According to the generalized Faxen's 
law, the translational velocity of a sphere freely sus- 
pended in an arbitrary undisturbed flow changes from 
the surface average (Faxen's) velocity to the l:)cal veloc- 
ity of the primary flow at the drop center in the tran- 
sition from a solid, no-slip sphere to an inviscid gas 
bubble. 

PROBLEM STATEMENT 

We consider a neutrally buoyant spherical drop 
suspended in an incompressible Newtonian fluid 
which is undergoing an undisturbed flow U '  (x) at in- 
finity, as indicated in Figure 1. The interface between 
the two immiscible fluids 1 and 2 is assumed to be 
clean, mobile, and characterized completely by con- 
stant interracial tension 7. The analysis which we con- 
sider is predicated on the neglect of inertia effects in 
the fluid both outside and inside the drop. Let a be the 
characteristic drop radius, and u~ the scaling of the un- 
disturbed flow. Furthermore, define the Reynolds 
number, Re= aur 2, where i, 2 is the kinematic viscosi- 
ty of fluid 2 outside the drop. Viewing the problem as a 
fixed laboratory observer, and requring 

Re<< 0 (I), (i) 

the governing equations are approximated by the fa- 
miliar Stokes equation plus the continuity equation in 
each fluid, i.e., in dimensionless form, 

Fig. I. Schematic sketch for (a) a uniaxial exten- 
sional f low and (b) a linear shear flow. The in- 
stantaneous coordinate of the drop center is 
x=O.  

V . 8 = - V f ~ x V Z 6 = O , V . ~ = O  for fluid [ (2) 

V . a = - v p + v ~ u = O , V . u = O  for fluid 2 (3) 

in which c, (or ~) is the dimensionless stress tensor with 
the characteristic stress taken as 

pc = ,u~.6- a 

and x is the viscosity ratio, i.e., x =/~/,u 2. The bound- 
ary condition far from the drop is 

u-~U~'<x), p-~p~<x,, as Ixl--~ (4t 

in a laboratory frame of reference. On the interface 
separating fluids 1 and 2, x~S,  we require 

l u l ) : o  (5! 

I"'al]s= ~a ~ (V'n)n (6) 

1 ~ f  (7~ 
n - u = n . ~ =  IVSI O! 

where the symbol [[ -I ]s denotes the jump in the brack- 
eted quantity across S. In these equations, the drop 
surface S is conveniently specified using a spherical 
coordinate system=, defined as S:r-l-f(O, ~,t} = O. The 
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vector n is the unit normal into fluid 2 at the interface,., 
i.e., n = VS/[ VSt an d .V-n  is the surface curvature. 

Fquation (6) is the surface stress condition, and 
contains both continuity of tangential stress, and the 
normal stress balance between viscous and pressure 
stresses and capillary force. The parameter Ca(=lXU/7) 
is the capillary number, i.e., the ratio of the deforming 
viscous force to the restoring surface tension force. 
Equation (7) is the kinematic condition which relates 
the normal velocity components at the drop surface to 
the rate of change of the drop shape. The equations 
and boundary conditions (2)-(7) are sufficient to com- 
pletely'determine the velocity and pressure fields in 
fluids 1 and 2, as well as the drop shape. 

S O L U T I O N  M E T H O D O L O G Y  

Now, we have seen that the problem represented 
by (2)-(7) is both nonlinear, and unsteady due to the 
boundary conditions (6) and (7). Thus, the solutions 
for motion of a drop will depend on the prior history of 
the imposed flow it has experienced. Although the 
nonlinear drop deformation problem cannot be solv- 
ed exactly (except by numerical methods), it can be 
solved approximately by an asymptotic method when 
the drop deformation remains small. 3"he obvious 
physical requirement for this condition to be satisfied 
is that 

Ca<< 0 (.1). (8) 

It is important to recognize that the capillary numbe~ 
Ca can be viewed as the ratio of the surface tension 
relaxation time scale, ualT, relative to the advection 
time scale, a/u o of the imposed flow. When the condi- 
tion (8) is satisfied, the drop deformation will not only 

be in a quasi-steady (i.e., ~ t  = 0), but the magnitude o f  

the deformation will also be asymptotically small. 
Since for a nearly spherical drop shape the bound- 

at5' conditions can be extrapolated onto a sphere, the 
flow fields inside and outside the drop ,=an be deter- 
mined as a regular perturbation expansion, and hence 
the evolution of the distortion can be predicted unitl 
such time as it ceases to be small. The leading order 
approximation {i.e., for f(0,4,)] thus represents l:he 
motion of a spherical drop immersed in the prescribed 
flow. When the velocity and stress fields have been de- 
termined from the leading order approximation equa- 
tions, the normal stress condition (6) can be used to 
determine a first correction to the drop shape. 

The most frequently used technique for the leading 
order problem is the use of eigensolutions of Laplace's 
equation in spherical coordinates. Lamb [18] derived a 
general solution of the creeping motion equations in a 

series of solid spherical harmonics. Specializing the 
general solution to separate domains involving the re- 
gions inside and outside the drop, we must have 

p('x) =p~  (x)+ .~ - p" ' ,,=, r . . . . .  r =  Ixl (9) 

u ( x ) : U ~ ( x )  +-Z" ~VZ. x r  4'. 
,,= ~ r2n+ ~ + V  '- 2'0'1+1 

n - 2  
2 n ( 2 n -  1) 

for r> I, and 

n = l  

r~ V p,~ n + l  p,, 

(lo) 

111) 

~ (x)= Z [V2~x r+V r (n+3) r ' 
.=, 2 x ( n + l )  (2n+3)  V/~ 

n r ~ .  ] (J2) 
x (n+  1) (2n+3) 

for r<l.  Here, p,, X,, ~,,,/~,,. , ~  and ~,, are the solid 
spherical harmonics of order n. It should be noted that 
the general solutions (9)-(12) automatically satisfy the 
governing differential equations (2) and (3), as well as 
the condition (4) of vanishing disturbances in the far 
field. The various spherical harmonics are to be deter- 
mined from the boundary conditions (5) and (6) at the 
drop surface, i.e., continuity of tangential velocity and 
stress and zero normal velocity. All that is required for 
doing this is a specification of the undisturbed flow 
velocity U~(x) and pressure p ~ (x) in terms of spher- 
ical harmonics plus a solution of the algebraic rela- 
tionships that result from applying the boundary con- 
ditions (5) and (6) at the spherical drop surface. 

In the analysis which follows, we shall use the gen- 
eral solution (9)-(12) to examine the case of a drop 
which moves through various undisturbed Stokes 
flows in an unbounded domain. The solution for the 
flow outside the.' drop will then be expressed in terms 
of the fundamental solutions of the creeping motion 
equations, and these results used in the forthcoming 
part of the present series to study drop motions near a 
phase boundary, as a simple model of 'coalesoence'. In 
addition, it will be shown that a generalization of Fax- 
en's law can be obtained to calculate the resistance of a 
drop suspended in an arbitrary undisturbec1 Stokes 
flow. Finally, the deformed shapes will be determined 
for a fluid drop freely suspended in an axisymmetric 
paraboloidal (Poiseuillian) flow. 

U N I F O R M  S T R E A M I N G  A N D  L I N E A R  F L O W S  

Let us then begin by considering the case of a fluid 
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drop immersed in a uniform streaming, linear shear or 
uniaxial extentional flow of an unbounded fluid, as de-- 
picted in Figure 1. Although a number of the linear-. 
flow cases for a spherical drop in an unbounded do-- 
main have previously been solved elsewhere, by other 
methods, the solutions as their expression in terms of 
a sut:,erposition of fundamental singularities are a nec- 
essary preliminary to the use of reflections procedure 
for studying drop motions near a boundary [17,19]. 

For the case of a uniform streaming flow U ~ (x) = 
%, in an infinite fluid domain with no external bound- 
aries, an exact solution for a fluid drop is the Hada- 
mard-Rybczynski solution [20]. The velocity field out- 
side the fluid drop in this solution can be represented 
by superposition of the fundamental solu:ions for a 
point force (i.e., Stokeslet) and a potential dipole, both 
applied at the drop center: 

3 2 /3- -~  u (x e : ~ ; ~) (13a) S1:okeslet " 4 1Tx  

Potential Dipole" 1 x 4 1 + ~  u~(x;  e~) (13b) 

where x is the viscosity ratio of the fluid drop relative 
to the suspending fluid. The fundamental solutions u s 
and u D for a Stokeslet a and a potential dipole ,8 are 
given by 

a ( a . x ) x  
u~ (x; a) = 7 -  -t r~ (14a) 

and 

uo ( x ; Z ) =  - g - +  3 (,8.x) x 
r , r ~ (14b) 

The most interesting feature of solution (13a,b) is that 
it is a superposition of precisely the same singularities 
as are needed for a rigid, solid sphere in the same flow. 

Indeed, as x--,oo, equations (13a,b) reduce to the veloc- 
ity field for the case of a rigid, no-slip sphere, and is 
identical with the flow generated by the singularities, 

a =  ~-e: ,  and ,8=-~-e.,:at the origin. Thus, in spite of 
the fact that the boundary conditions at the drop sur- 
face are quite different from the solid sphere-i.e., con- 
tinuity of tangential velocity and stress and zero nor- 
mal velocity are required instead of the no-slip 
condition-it is only magnitude of the necessary sin- 
gularities that changes rather than the type of singular- 
ities in the transition from a solid to fluid sphere. 

It is also straightforward to solve for the motion of a 
fluid drop in an unbounded domain that is undergoing 
various linear undisturbed flow. We begin by consider- 
ing the simplest case of an extensional flow 

U~ (x', = E  �9 x 

where the strain rate tensor E = { E,j} is defined by E j :  
3nab';1-8,;,, Note that E has been nondimensionalized 
with respect to the mean strain rate E (i.e., u~ = Ea). 
Expanding U | (x) and p ~ (x)in terms of spherical har- 
monics, it can be easi]y shown that the exact solution 
for the velocity field exterior to a drop is equivalent to 
that generated by a stresslet and a potential quadru- 
pole at the drop center, of the form: 

Stresslet " 5 2 / 5 - ~  
2 1 : x  

Potential Quadrupole " 

u~s (x; e~, e~) (15a) 

1 . x  
2 l + z  upQ (x; e~' e~) 

(15b) 

where the fundamental solutions, Uss and UpQ, for a 
stresslet (7,6) and a potential quadrupole (v,!,) are 
given by 

y'8 3( / 'x )  (6.x) ~x (16a) 

and 

up,, (x; v, ~')= ~'V u,~ (x; v).  (16b) 

Again the remarkable fact is that the singularities re- 
quired to satisfy boundary conditions at the surface of 
a drop are the same as required for a no-slip sphere. It 
is only the magnitude of the coefficients that depends 
on the viscosity ratio, i.e., x. Of course, the ratio of 
stress[et to potential quadrupole strength is not the 
same as for a solid sphere, except in the limit ~--,oo 
when the present solution for the velocity field exterior 
to the sphere reduces to 

u I x ) = U ~  - 5 1 �9 , 2 - u . ~ ( x ; e ~ , e ~ ) - ~ U p Q ( X ; e ~ , e x )  

which is identical with Chwang and Wu's result for the 
case of a solid sphere [21]. 

Another linear flow probtem that we need for study 
of drop motion near a phase boundary is the steady 
simple shear flow past a neutrally buoyant drop [19]. 
In this problem, the fluid velocity at infinity, nondi- 
mensionalized with respect to ur = f a  ( F :  shear rate), 
is 

U ~ (x) = :.vex. 

Since a simple shear flow can be represented as a 
superposition of a plane extensional flow and a rigid 
body rotation, we can easily determine a complete 
solution by superposition of the preceding rest.tits of 
(15a, b) and the rigid body rotation. The singularities re- 
quired for construction of the solution exterior Io the 
drop, apart from the rigid body rotation and primary 
flow, are a stresslet and a potential quadrupole of the 

October,  1989 



Motions of a Fluid Drop in Linear and Quadratic Flows 325 

form: 

S:resslet : 5 2/5 ~z 6 1 * z u ~ ( x ; e . , e y )  (17a) 

1 x 
Potential Quadrupole " 6 1-- Z u~Q Ix; e~, eyi.  

(17b) 

The present solution, (17a,b), is identical to that obtain- 
ed by Taylor [4] who investigated the viscosity of a 
fluid containing small drops of another fluid. Again, it 
is noteworthy that the same fundamental singularities 
apply for the fluid drop, as for the solid sphere, though 
their ratio of magnitudes reduces to the no-slip limil 
only for x ~ oo. 

QUADRATIC PARABOLOIDAL AND 
STAGNATION FLOWS 

We now consider various quadratic flows that will 
be necessary for solution of the problem of drop mo- 
tion near a phase boundary The first case is a flow 
with a paraboloidal velocity profile. 

L > ( x ) =  ',~3?~z2)e..p~(x)=2,,se~l)x. (18a, b) 

The spherical drop is again assumed to be centered at 
the origin, see Figure 2 (in this case u~ = Kd, p~ =pKr 
with proportionality constant K). The form of the 

paraboloidal flow depends upon the value of the param- 
eter ~. When ~ = 0, the paraboloidal flow degenerates 
into a 2-dimensional Poiseuille flow. For4:>0, it 
can be interpreted as the pressure-driven flow through 
a tube of elliptic cross-section. The case ~ ,~ 0 is prima- 

rily of interest as a local component of a more com- 

plicated flow. 
Let us first consider the simple case of an axisym- 

metric paraboloidal flow with ~ = 1. In this case, the 
solution must be independent of the azimuthal angle 

. Thus, the only nonzero spherical harmonics in the 
general solution are those with rank zero, and, in addi- 
tion, ;On = 0. The remaining spherical harmonics can 
be determined from the boundary conditions (5) and 
(6) at the drop surface in combination with the presc- 
ribed flow field at infinity that is incorporated into the 

general solutions, (9)-(12). 
The velocity field exterior to the drop, correspond- 

ing to the exact solution for s ~ = 1, can again be ex- 
pressed by a superposition of the fundamental soh-  
tions for Stokes flow. The required form, apart from 
the primary flow, is: 

1 
Stokes~et  " 2 l ~ x "u~ (x; e~) (19a) 

Fig. 2. Schematic sketch for (a) a quadratic para- 
bololdal flow, and (b) a quadratic stagnation 
flow. 

1 2 - 5 x  
Potential Dipole ' 12 lq  x u o ( x ; e ?  (19b) 

1 2 + 7 z  O 2 , 
Stokes Quadrupole " 12 1 + x Ox 2ustx; e~) 

(19c) 

Potential OctupoIe " 1 x a '  

(19d) 

As suggested by the variable velocity gradient of the 
primary flow we also require an axial Stokes quadru- 
pole ~-~ O~ u ,  (x;exland a potential octupole ~-2 ~-' u~,~ ('x;e;,) 

that is associated with the Stokes quadrupole to bal- 
ance the power-law variations of the solution in r. It is 
again noteworthy that the singularities required in (19) 
for a drop are identical to those determined by 
Chwang and Wu [21] for rigid, solid sphere, with the 
coefficients reducing to the solid sphere values for 
; r  The drag on the drop comes solely from the 
contribution of the Stokeslet: 

F = 4 n ~  e ~ (20) 

(the dimensional drag is F multiplied bypKa 3. As ex- 
pected, the drag is an increasing function of the vis- 
cosity ratio z. Indeed, the drag. becomes zero for an 
inviscid gas bubble (i.e., z = 0). 
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To construct an exact solution for the more general 
paraboloidal flow, (18) with ~: # 1, we need to deter- 
mine a solution either for 

tr ~ (x; = y~ex (2 la ', 

or for 

U ~ (x,~ = z ~ e~. (2 lb ) 

Any general paraboloidal flow, (18), with ~ :~ 1, can 
then be constructed by superposition owing to the 
linearity of the problem. Moreover, the solution for 
(21 a) [or (21 b)] can be easily obtained by decomposing 
the exact solution (19) just obtained for U ~ (x) = 0, ,2 + 
z2)e:, into two symmetric parts corresponding to the 
2-dimensional paraboloidal flows of (21 a,b), see Yang& 
Leal [22]. The total hydrodynamic force ac~ing on the 
spherical drop in the primary flow, (18), for arbitrary 
can tie obtained by superposition: 

x (2211 F = 2 z r ( l = ~  "', i + x e ~ .  

Te torque T is obviously zero for arbitrary {!. 
Finally, we consider a quadratic stagnation flow 

with a velocity profile 

1 [l = X I = ~  ~l+~)x'e.~ - ~XJey--XZez (23a',, 

whiclh obviously satisfies the creeping motion equa- 
tions if the pressure associated with it is 

l ~ (x)= (14 ~)x. (23b) 

The stagnation plane is x = 0, as depicted in Figure 2. 
Although this type of quadratic flow may be of some 
intrinsic interest as a local component of a more com- 
plicated flow in an unbounded domain, it is primarily 
of interest in determining the motion of a particle near 
a phase boundary. 

Let us consider, first, the simple case of the axisym- 
metric stagnation flow, (23) with ~ = 1. In this case, the 
exact solution for the flow fields exterior and interior to 
the drop involves the nonzero spherical harmonics, p,  
and r with n = 1, 3 and rank zero, in the general 
solution (9)-(12). Not surprisingly, in view of previous 
examples, the flow field exterior to the spherical drop 
can be expressed in terms of fundamental solutions of 
Stokes' equations. In particular, the exterior velocity 
associated with the spherical harmonicsp,  and r can 
be represented by a Stokeslet (required to produce a 
drag), a potential dipole (associated with the Stokeslet 
to account for the body-thickness effect), an axial Sto- 
kes quadrupole [as suggested by the variable velocity 
gradient of U ~ (x)J and a potential octupole (associated 
with lhe Stokes quadrupole): 

Stokeslet " 1 �9 Us (x; e~) (24a) 
4 1-~r 

�9 1 2 + ~  (x;e,l (24b) Potential Dipole 12 1 § u~ 

1 2 4~7x 02 
Stokes Quadrupole " 12 1 + x O~ us(x;e~) 

(24c) 

1 x 0 ~ 
Potential Octupole " 12 l~-x Ox ~u~'(x;e~)- 

(24d) 

The total hydrodynamic force on the drop is evaluated 
from the Stokeslet contribution: 

F =  2 ; r  e~ (25) 

which reduces in the limiting case of a solid sphere 
(i.e.,x~ oo) to l~n 2 F = 2~r%. 

Now, we consider the more general quadratic flow, 
(23) with ~ : / I .  The solution exterior to the spherical 
drop is analogous to that for U ~ (x) = (ey2 + z2)ex in 
the previous example. In view of the linearity ,of the 
problem, it is sufficient to solve for the primary flow 

1 2 U ~ (ix)= ~ x  e ~ -  xAe, (26a) 

o r  

i 2 U ~ (x)= y x  e~-xze~ (26b) 

in order to construct the exact solution for I.J ~ (x) 
given by (23) with arbitrary ,~. However, if we note that 
the primary flow, (23) with ,~ = 1, consists of two sym- 
metric components of the type (26a,b), then decom- 
posing the solution (24) into the two parts we can easi- 
ly determine the velocity field for each component 
flow. 

The resulting hydrodynamic force acting on the 
drop immersed in the primary flow, with U ~ (x) given 
by (23), is thus 

F = u ( 1  ~)~x+~x e:~. (27) 

When x-,co, Equation (27) reduces to the drag for the 
case of a solid, no-slip sphere, and is identical with the 
result of Chwang [123] for ~= 0. It is noteworthy that a 
freely suspended drop at the stagnation point of the 

primary flow will translate with velocityU= 14- ~ x 2 2+3x  

% without applying a negative force - ~(1+~',, x 

%. The induced translational velocity becomes zero 
as ~ 0 ,  so that an inviscid gas bubble will stay at the 
stagnation point at all times. 
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GENERALIZED FAXEN's  LAW 

Let us then turn to the general problem ol a spheri- 
cal drop immersed in an arbitrary undisturbed flow 
field { U ~' (x), p~ (x)} which itself satisfies the creep- 
ing motion equations. Following the preceding anal- 
ysis, this problem may be solved directly by a specifi- 
cation of the various unknown spherical harmonics 
from the boundary conditions at the sphere surface, 
i.e., the continuity of tangential velocity and stress and 
zero-normal velocity. However, if we wish only to cal- 
culate the hydrodynamic force on a sphere (solid or 
fluid), and not the velocity field itself, it is possible to 
do so by evaluating only a small number of spherical 
harmonics as a consequence of the integral theorem 
for the spherical harmonics [20]. 

A general expression for the hydrodynamic force 
exerted on a particle of arbitrary shape can be derived 
by integrating the surface force n- a over a circumscrib- 
ed sphere in the fluid: 

F = - 4 ~VP, .  (28) 

Thus, the hydrodynamic force on any spherical parti- 
cle can be evaluated by determining the spherical har-. 
momc Pl from the boundary conditions at the sphere 
surface. Adopting the general method outlined by Bren- 
ner [24], we can determine directly this harmonic pj 
by utilizing the orthogona[ properties and mean-value 
theorem of the spherical harmonics and. the vector 
identities of V4U ~= VSl3 ~ = O etc, in the creeping 
flow. The result for a spherical drop is simply given by 

Pl = - / - 3  2/3 ~X_u~(O 1 
"2 1-~x ' ,+4I+xV'U~(O)I 'x .Tf - -  

(2.~0 

The ]inearity of the problem enables us to determine 
the resistance of a drop which moves with transla- 
tional velocity U in an undisturbed flow. Combining 
(13a) with (29) we have 

�9 2/3-r x l r l ~  V:'U~ (Or.(30) 1 ~ = 6 z r ~ %  T -  tU ~ (0~ - Ut + 

This result is a generalization of Faxen's law to a spher- 
ical drop immersed in an arbitrary undisturbed 
flow. It is a simple matter to reproduce Faxen's law by 
taking limit x--, oo in the solution (30), i.e., F = 6n 
/ U ~ (0).  U / + ~ 7 : ' U  ~ (0) as ~ oo. 

From the generalized Faxen's law, (30), we can eval- 
uate the translational velocity U of a freely suspended 
neutrally buoyant drop in an arbitrary mean flow 
u" (x ) :  

1 1 V~U ~ O)  !31a.) U = ' < U ~ >  s 3 2+3x  

where the surface average of the primary flow 
< I_?o> .~. is given by 

< t l ~ > ~ = U  ~,:O)~ j V 2 U  ~(0) .  (31b) 
6 �9 

It is of interest to note that the translational velocity 
113 la) is different from the surface average Faxen's velocity 
of the primary flow, which would be the result for 
a solid, no-slip sphere according to Faxen's law. In- 
deed, as x-~ 0, the translational velocity becomes the 
same as the local velocity of the primary flow at the 
drop center, U = IJ ~ (O). As an example of applica- 
tion, we determine the trajectory for a spherical drop 
freely suspended in an off-centered paraboloidal flow, 
U ~ (x) = t~(y-y0) 2 + (z-zJ/e,,,  that is equivalent to a 
centered one (i.e., with Y0 = z0 = 0) superimposed on a 
uniform streaming flow plus linear shear flows. The re- 
sult is 

U=L~y0-  o-  3 2 / 3 -  ]e~. (321 

The trajectory equation (32} are relevant to the prob- 
lem of a spherical drop freely suspended at an ar- 
bitrary point in Poiseuillian flow through a cylindrical 
tube of elliptic cross-section. 

D R O P  D E F O R M A T I O N  

When a drop moves through a viscous fluid, the 
fluid in the neighborhood of the drop is disturbed. The 
disturbance generates a stress system which can be 
resolved into tangential and normal stresses acting at 
the drop surface. The tangential stress is assumed to be 
transmitted undiminished across the interface and 
thus establishes a system of velocity gradient in the 
vicinity of the interface. The normal stress, on the 
other hand, is discontinuous at the interface, and 
generates normal stress differences across the interface 
which can be balanced by capillary forces through in- 
terface deforn~ation. The leading-order solutions ob- 
tained in the preceding sections for a spherical  drop 
satisfy the conditions of continuity of the tangential veloci- 
ty and stress at the undeformed interface, as well as 

zero-normal velocity. However, they do produce an im- 
balance in the normal stress components across the 
drop surface. Thus, to calculate a first correction, to the 
drop shape, it is necessary to solve the differential 
equations (6) with the normal stress difference 
[I a-nl  ] s evaluated from the leading-order solution. 

As a simple illustration, consider the problem of a 
fluid drop freely suspended in a circular cylindrical 
tube through which a viscous fluid is moving axially. 
We suppose that the cylinder radius, R, is much larger 
than that of the drop (i.e., ~I << 1 ) so that the hydro- 
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Fig. 3. Schemat ic  s k e t c h  of a drop f r e e l y  s u s p e n d e d  
in a Po i seu i l l e  f low. 

dynamic wall-effect may be negligible. The cylinder 
axis is taken to be the x-axis, at which the drop center 
is situated, see Figure 3. At large distances from the 
drop the undisturbed flow is a quadratic paraboloidal 
(i.e., Poiseuillian) flow. Thus we set 

U ~ (x) : ~/~,2- p~]e~, p~= .y2 ~zz. {33) 

According to the generalized Faxen's law, the drop will 
move with a constant velocity 

2x le~ 

parallel to the axis, whereas the superficial flow of fluid 
occurs in the same direction with a mean velocity of 
R2/2 e~. Note that the velocity is nondimensionalized 
with respect to u~ = Ka 2, and K is a Poiseuille-flow 
parameter. 

The normal stress difference [I a ' n ' n  I]s across the 
drop surface S can be evaluated by a superposition of 
the leading-order solutions for a uniform streaming 
and[ quadratic paraboloidal flows and expressed in 
terms of the Legendre polynomial of third order, P3: 

1 1 0 + 1 1 ~  
~ta 'n 'nJ]~=P'"-P~+ 2 l + x  P~(q) , r j=cos0  

('s4~ 

where 0 is the spherical polar angle measured from 
the x-axis, that is the axis of symmetry. In (34), S 

denoles the pressure at the interface inside the drop 
phase and p ~ is the reference pressure far from the 
drop. This pressure difference, pi,,p ~, is precisely bal- 
anced by interfacial tension for the drop in its undis- 
turbed spherical shape (S: r-I = 0), i.e., pin.p~ = 2  It 

is thus obvious that the first correction to the drop 
shape, f(0, ,;b), is independent of the azimuthal angle 

owing to the axisymmetry of the problem. The dif- 
ferential equation for the shape function f(O) follows 
directly by substitution of (34) into (6), noting that 
n = rJS/I  7'SI, so that 

d / ( 1 -  772) -rift Ca 10 * l l x  
-d-7) dr/ ~ 2 f =  ~ 1~ x P'3 (r/) (35) 

1LKa 2 . . where Ca = - -  The equat,on (35) can be solved ,n y �9 
terms of the Legendre polynomials subject to tlne con- 
ditions ~/ '  f(q)d~7 = 0 since the characteristic length a 

has beefi,seta_ equal to the radius of the 'equivalent' 
spherical drop, and "/'Tlt(~)d~ = 0 since the origin of 
the coordinate systen"]'has been chosen to coincide 
with the center of mass of the drop. The resulting solu- 
tion for the drop shape S(r,O) is 

S (r, O) " r - 1  f ~O)=O (36a) 

where 

f iO)-- Ca 1 ~1.1~ p~ (cosO). (36b) 
2 l + x  

The computation shows that there exist three dis- 
tinct cases depending on the capillary number, i.e. 

Case I "Ca<Ca ,=0 .2857  l + x  
1 + 1 .  l x '  

Case II " Ca,< Ca~Ca .=O.  3412 1 + - ~  
1 ~ 1. i x '  

Case llI" C a . < C a  

that exhibit different deformation behaviors. The re- 
sults are shown in Figure 4. In the case 1, the surface 
curvature V.n is positive everywhere at the drop sur- 
face. When the capillary number has a critical value 
Ca t the curvature is zero at the front stagnation point 

Fig. 4. D e f o r m e d  drop  s h a p e s  c o r r e s p o n d i n g  to the three  dis t inct  c a s e s  I, II and III. 
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(0 = 180~ which is identified by letter A. On the other 
hand, for case 1I, the interface in the neighborhood of 
the stagnation point A becomes dented (i.e., IV .n <0) 
into the drop (and ~7-n>0 elsewhere). As we can see 
in Figure 4, the waist appears at point B (0 = 62.5 ~ if 
the capillary number is larger than the second critical 
value Ca11. Although the present analysis cannot pro- 
vide any quantitative informations for very large defor- 
mation, it can be expected from the result that the 
drop will deform without limit eventually leading to 
breakup as the capillary number increases further after 
the Waist appears. 

3'his completes our detailed study of solutions for a 
fluid drop in an unbounded fluid, immersed in a pre~ 
cribed mean flow at infinity. Calculation of the hydro- 
dynamic force exerted on the drop leads to a Faxen- 
type taw for a spherical fluid particle in an arbitrary 
undisturbed Stokes flow. These solutions play an im- 
portant role in determining the general motion of a 
drop in the vicinity of a phase boundary. The most in- 
teresting, and important, feature of the unbounded do- 
main solutions is that the disturbance flow in the fluid 
can always be expressed as a superposition of the 
same fundamental singularities at the drop center, as 
are required for motion of a solid, no-slip sphere in the 
same flow. Only the relative strengths of these singu- 
larities depend upon the viscosity ratio. 
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